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This paper is concerned with the experimental validation of a structural health
monitoring methodology, previously only investigated using synthetic data. The structure
considered here is a simplified model of a metallic aircraft wingbox i.e., a plate
incorporating stiffening elements. Damage is simulated by a saw-cut to one of the panel
stringers (stiffeners). The analysis approach uses novelty detection based on measured
transmissibilities from the structure. Three different novelty detection algorithms are
considered here: outlier analysis, density estimation and an auto-associative neural network
technique. All three methods are shown to be successful to an extent, although a critical
comparison indicates reservations about the density estimation approach when used on
sparse data sets.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

For many years, vibration analysis has been used for structural health monitoring and
machine condition monitoring, although it is arguably in the latter field only that
the approach has made the jump from academia to industry. Most vibration-based
fault detection methods are based on empirical procedures which establish some
correlation between the structure or machine behaviour and the vibration level. The
object is to identify if and when the system departs from normal condition. At a slightly
more sophisticated level, the problem of fault detection can be regarded as a hierarchy of
levels [1].

Level 1 (Detection): The method gives a qualitative indication that damage might be
present in the structure.

Level 2 (Localization): The method gives information about the probable position of the
damage.
yNow QinetiQ.
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Level 3 (Assessment): The method gives an estimate of the extent of the damage.
Level 4 (Prediction): The method offers information about the safety of the structure

e.g., estimates a residual life.

In terms of the detection problem (level 1), recent work has established a framework
based on the so-called novelty or anomaly detection, which unifies approaches from a
number of different disciplines [2–4]. The philosophy of the approach is simply to establish
a description of normality using features representing the undamaged condition of the
machine or structure and then test for abnormality or novelty when new data becomes
available. This is clearly in line with the philosophy of classical machine condition
monitoring.

There are numerous different methods of novelty detection. These include methods
based on simple distance measures [5], probability density estimation [2, 3], artificial neural
networks [4, 6, 7] and wavelet analysis [8]. Previous work by the authors has concentrated
on the neural network and statistical procedures [4, 5, 9].

There is less success reported in the literature on the construction of higher level
diagnostics, particularly in the experimental context. One notable exception to this is the
modal strain energy approach of Stubbs and co-workers which has been validated on large-
scale civil structures [10, 11]. A later paper in this sequence of three [12], will address the
issue of damage location, but from the viewpoint of a set of novelty detectors.

Despite the recent proliferation of damage detection work, much of it has been of a
theoretical or computational nature and experimentally validated studies remain the
exception rather than the rule. The object of the current sequence of papers is to validate
the novelty detection methods discussed in previous papers [4, 5, 9] on real structures. In
this first paper, the structure of interest is a stiffened panel which is designed to simulate an
aircraft wingbox. The second and third papers in this series will consider the problems of
damage detection and location respectively on an aircraft wing [12, 13]. The features used
for the analysis are transmissibility frequency response functions (FRFs) as used in
reference [4]. The advantage of these features is that they use only responses of the
structure and can therefore give a diagnostic even if the ambient excitation is unknown.
Although this is highly speculative, in the context of aerospace structures, such features
could potentially be used for in-flight monitoring.

The work for these three papers has been carried out over a period of 3 years. It has
been, as all research should be, a learning experience and the papers have been written in
such a way as to reflect this. The authors feel that descriptions of wrong turns and blind
alleys can be as useful to other investigators as a straightforward presentation of successful
work.

The layout of this paper is as follows: Section 2 is concerned with describing the panel,
the instrumentation and the measurement strategy. Section 3 describes the three methods
of novelty detection which are applied here. Section 4 contains the results of novelty
analysis. The paper concludes with some discussion in Section 5.

2. THE EXPERIMENTAL PANEL AND DATA CAPTURE

The first stage of the work was to construct the panel to the following specifications. The
upper surface is 750� 500� 3 mm aluminium sheet (Figure 1: this is a schematic figure, it
is not to scale. It is simply intended to show the construction of the panel). This is stiffened
by the addition of two ribs composed of lengths of C-channel riveted to the short edges.
Two stiffening stringers composed of angle section run along the length of the sheet. This
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Figure 1. Schematic of simulated skin panel.
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design was intended to be compatible with a finite element simulation to be carried out in
parallel by DERA. The tests were all conducted with free–free boundary conditions for the
panel, which was suspended from a substantial frame using springs and nylon line.

Damage was simulated here by the introduction of a saw-cut in the outside stringer
125mm from the edge of the panel (Figure 1). Nine levels of damage were investigated
from 10% depth to 90%: As the stringer is 1 in in extent, each level corresponds to 2.5mm
of damage.

The analysis approach was novelty detection based on transmissibility FRFs as in
reference [4]. At each stage of damage, FRFs were taken from the panel. Three
transmissibility paths were identified: AB; AC and DC; as seen in Figure 2. AB is along the
line of the damaged stringer, while DC is offset by 100mm (again note that Figure 2 is a
schematic only).

The system was excited using a Gearing and Watson electrodynamic shaker driven by
broadband white noise amplified by a Gearing and Watson power amplifier. The
responses were measured using PCB resonant piezoelectric accelerometers and sampled
using a DIFA/Scadas acquisition system running LMS software under the control of a HP
computer. The DIFA system was also used to form the random excitation.

The frequency range over which the transmissibilities were taken was 0–250Hz and in
all cases 2048 spectral lines were taken. In order to have clean data to identify which
modes were sensitive to the damage, an averaged transmissibility was taken for each path.
One hundred and twenty eight averages were taken in each case. In order to accumulate a
reasonable size of normal condition set, 128 transmissibilities (not averaged) were taken
for each path. This was in order to validate the damage detection methods which require
reasonably sized data sets without resorting to a priori assumptions regarding the extent
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Figure 2. Transmissibility measurement paths.

Figure 3. Top of plate showing accelerometer placement along the stringer.
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and colour of measurement noise. For each of the damage cases, an average over 128
transmissibilities was taken as well as 10 unaveraged patterns to form the test set. The
analysis of this data forms the basis of section 4 of this paper.

Figures 3 and 4 show the test facility. (Note the extra accelerometers, they were used to
perform a top surface modal analysis for purposes reported elsewhere [14].)

3. METHODS OF NOVELTY DETECTION

The following sections will use the terminology of neural networks as follows: the
normal condition data used to construct the novelty detector will be referred to as the
training set and the process of extracting the detector as training. The subsequent data
which the detector checks for anomalies will be termed the testing set.

3.1. OUTLIER ANALYSIS

An outlier in a data set is an observation that appears inconsistent with the rest of the
data and therefore is believed to be generated by an alternate mechanism to the other data.
The discordancy of the outlier is some quantitative measure of the extent of this
inconsistency. The standard reference on outlier detection is reference [15].

In the case of univariate data, the detection of outliers is a relatively straightforward
process in that the outliers protrude from one or other end of the data set. The most



Figure 4. Base of plate showing shaker attachment point.
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common discordancy test which exploits this, and the one whose extension to multivariate
data will be employed later is given by

zz ¼
jxz � %xxj

s
; ð1Þ

where xz is the measurement corresponding to the potential outlier and %xx and s the mean
and standard deviation of the sample respectively. The latter two values may be calculated
with or without the potential outlier in the sample depending upon whether inclusive or
exclusive measures are preferred. This discordancy value is then compared to some
threshold value and the observation declared, or not, to be an outlier. There are numerous
ways of defining and computing the thresholds for the univariate and multivariate cases.
The method used here is based on extreme values and is defined in reference [5]. The
threshold is dependent on both the number of observations and the number of dimensions
of the problem being studied. The value also depends upon whether an inclusive or
exclusive threshold is required.

A multivariate data set consists of n observations in p variables and can be represented
as n points in a p-dimensional space. Detection of outliers in multivariate data is more
difficult than the univariate situation due to the potential outlier having ‘‘more room to
hide’’ in the data space. However, many of the ideas and techniques associated with the
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detection of outliers in multivariate data follow on from those applicable to univariate
problems.

The discordancy test which is the multivariate equivalent of equation (1) is the
Mahalanobis squared distance measure given by

Dz ¼ ðxz � %xxÞTS�1ðxz � %xxÞ; ð2Þ

where xz is the potential outlier, %xx is the mean of the sample observations and S the sample
covariance matrix. T indicates transpose.

As with the univariate discordancy test, the mean and covariance may be inclusive or
exclusive measures. In many practical situations the outlier is not known beforehand and
so the test would necessarily be conducted inclusively. In the experiments discussed here
however, the candidate outlier is always known beforehand and so it is more sensible to
calculate a value for the Mahalanobis squared distance without this observation
‘‘contaminating’’ the statistics of the normal data.

Note that the training data has to be composed of many patterns representing normal
condition in order to produce a diagnostic robust in the presence of measurement noise. If
only a few normal patterns are available (which is the situation that arises later for density
estimation), these can be artificially corrupted with noise to multiply the training set.
Clearly, the latter exercise requires assumptions about the level and colour of the noise
process. For simplicity, and to facilitate comparison with theory, the noise is often
assumed to be Gaussian.

3.2. AUTO-ASSOCIATIVE NETWORK

This approach employs a standard feed-forward multi-layer perceptron (MLP) neural
network trained by backpropagation of errors [16]. The network is trained to reproduce at
the output layer those patterns which are presented at the input. In order to ensure that
this is a non-trivial process the patterns are passed through hidden layers which have fewer
nodes than the input layer. This ‘‘bottleneck’’ structure, presented in Figure 5, forces the
network to learn the significant features of the patterns. The activation of the smallest,
central layer, corresponds to a compressed representation of the input. According to the
interpretation of reference [17], the network is carrying out a process of non-linear
principal component analysis, the eigenstructure of the normal condition data is learned
and the network can signal departures from this condition. The full five-layer network is
needed for this exercise (although the full non-linear structure can be relaxed to one in
which the third and fifth layer nodes can have linear activation functions; this was not
carried out here). In principal, the activations of the hidden nodes could have been used to
provide a reduced-dimensional representation of the data for KDE or outlier analysis.
However, because the network provides a diagnostic based on the full 50-dimensional data
vectors, they were retained to allow a fairer comparison with the other methods.

The novelty index or measure nð
%
zÞ; corresponding to a pattern

%
z ¼ zi; i ¼ 1; 2; . . . ; N;

is defined as the Euclidean distance between the pattern
%
z and the result of presenting it to

the network #zz;

nð
%
zÞ ¼ jj

%
z� #zzjj: ð3Þ

If the new data pattern is typical of normal condition and therefore falls within the
limits of the data set used for training, it is reproduced accurately at the output of the
network, thus nð

%
zÞ � 0; otherwise a non-zero nð

%
zÞ indicates abnormality which could

correspond to a fault condition. The advantage of the neural network over distance



Figure 5. Auto-associative neural network.
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measures like the outlier metric discussed above is that it can, in principle, learn complex
normal condition sets including those which are non-convex or even disconnected.

Clearly, there is still a need to establish a threshold on the index above which the pattern
is considered to differ significantly from normal condition. In this work, the threshold is
estimated from the training data. It is set to %nnþ asn; where %nn and sn are respectively the
mean and standard deviation of the novelty index n over the training set. The factor a
controls the degree of confidence in normality. In this study, confidence levels of 99 and
99
99% are used and these have a values of 2
576 and 3
891 respectively. Note that there is
an implicit assumption here that the statistics of n are Gaussian or near-Gaussian.

3.3. KERNEL DENSITY ESTIMATION

A more direct approach to novelty detection is to estimate the probability density
function (PDF) for the feature vectors over the normal condition set. Once the PDF is
known, new data can be accepted or rejected as normal on the basis of the PDF magnitude
for the pattern. Patterns with very low values are considered unlikely to have come from
the unfaulted distribution and are diagnosed as damaged. There are numerous methods of
estimating densities for multivariate data [18], the approach discussed here is the standard
kernel method as applied previously in reference [9]. The basic form of the estimate is

#ppð
%
zÞ ¼ 1

nh

Xn

i¼1

K %
z�

%
Zi

h

� �
; ð4Þ

where
%
Zi is the ith data point, n is the number of points in the training set and h is the

smoothing parameter which controls the width of the individual kernels. #ppð
%
zÞ is the

estimate of the true density pð
%
zÞ: The kernel function can be any localized function

satisfying appropriate constraints [18].
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The most common choice of kernel function, and the one adopted here is the
multivariate Gaussian,

KðxÞ ¼ 1

ð2pÞd=2
expð�1

2
jjxjj2Þ; ð5Þ

where d is the dimension of the data space.
Once the estimate #ppð

%
zÞ is established, the PDF values at any new measurement points

are trivially evaluated.
The kernels above have equal radii in all directions. In order to allow elliptical atoms

with more effective coverage of the data, the data here are transformed using the method
of Fukunuga [5].

The quality of the estimate depends critically on two factors. The first is the size of the
training set; this has been discussed in previous papers and will arise again later. The other
factor of importance is the value of h: If h is too small, the PDF will contain a lot of
spurious local structure. If h is too large, the estimate will be oversmoothed and its decay
rate with

%
z will be underestimated. The method used to establish the ‘‘correct’’ h here is

least-squares cross-validation [18].

4. NOVELTY DETECTION RESULTS

The first results given here are based on the transmissibility data for the path AB in
Figure 2, i.e., directly along the stringer. This analysis was carried out first as it was
anticipated that it would be most sensitive to damage.

4.1. PRE-PROCESSING

Pre-processing of the patterns was kept to a minimum, it was decided to use
the raw transmissibility functions for the basic patterns. Figure 6 shows the magnitude
of the normal condition transmissibility for the path AB (Figure 2). (As the
magnitude proved sensitive enough to the damage in previous studies i.e.,
reference [4], the phase was discarded.) As one might expect, the functions only
proved sensitive to the damage in the immediate vicinity of the peaks. There are
four dominant peaks.

The next step in the pre-processing was to reduce the dimension of the patterns as far as
possible; 2048 spectral lines is excessive. It was decided to single out the four dominant
peaks and examine which ones showed highest sensitivity to the damage. The first peak
(first of the dominant four) proved almost insensitive to the damage and was discarded.
Figure 7 shows that the second peak showed significant variations as the damage level
increased (the four lowest levels of damage are shown). The third peak appeared to be
insensitive to all but the highest levels of damage and was also rather noisier than the
other peaks. The fourth peak (Figure 8) showed significant variations with damage
level; furthermore, the variations have a systematic nature, the peak frequency shifts
downward with increasing damage and the peak size increases. Because peak 4 showed
marked and systematic variation in its form as a function of the damage, it was selected for
the basic feature. Spectral lines 1886–1935 were selected to form the 50-dimensional
feature vector.

The averaged transmissibilities took over 20min to acquire. In order to allow a fast on-
line diagnostic, it was decided to use unaveraged data to train and test the novelty
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Figure 6. Measured transmissibility magnitude along path AB:
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Figure 7. Variation in transmissibility peak 2 with damage.
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detectors. Figure 9 shows three examples of unaveraged patterns from peak 4 of the
transmissibility, the level of noise is clearly substantial in the region of the maximum.

In order to train the various novelty detectors, 118 of the raw patterns were used to form
the training set. The remaining 10 patterns were taken, with each of the 10 patterns from
the nine damage levels, to form the testing set.
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4.2. OUTLIER ANALYSIS

The training set was used to estimate a mean vector and covariance matrix for the
patterns. Equation (2) was then used to obtain the Mahalanobis distances for all points in
the training and testing sets. The results are shown in Figures 10 and 11 respectively. The
99
99% (dotted) and 99% (dashed) confidence threshold are shown, these were estimated
using the Monte Carlo method and found to equal 285
0 and 227
8 respectively. All points
in the training set fall well below the threshold as required. In the case of the testing set,
apart from one isolated excursion, the analysis fails to flag the damage until the cut is 30%
of the way through the stringer (7
5mm long). (The vertical dashed lines in Figure 11
separate the normal data and the nine damage states.) Beyond this point, damage is
signalled unambiguously. Note that the distance increases to a maximum and then
decreases again. This is due to the fact that at high levels of damage, the maximum for
peak 4 actually shifts out of the pattern window. When the resonance is in the wrong
place, there are two sources of novelty, one is the displaced peak and the other is the
missing peak at the location corresponding to normal condition. Once the resonance has
moved from the window, there is only the latter source of novelty and the Mahalanobis
distance comes down as a result. Note that for the 99% threshold, there is one false
positive (no real cause for alarm), while for the 99
99% there are no false alarms. However,
for the higher threshold the unequivocal damage level is 40%.

4.3. THE NEURAL NETWORK

The neural network was given a structure 50:40:30:40:50 as this had proved useful with
50-dimensional patterns in the past [4]. A rigorous approach could have been followed
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Figure 10. Mahalanobis distances on training set (normal condition data).
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Figure 11. Mahalanobis distance on testing set (damage data).
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which used a separate validation data set to optimize the structure. However, the
application of the structure above proved acceptable. Note that there are no claims
here to optimality. Because of the small training set and the large number of
connections in the network, Gaussian white noise was added during training in order to
provide regularization. The noise-to-signal ratio was approximately 10%. After
training, the value of the index in equation (3) was computed for all points in the
training and testing sets and the results are shown in Figures 12 and 13 respectively.
As before the thresholds correspond to 99 and 99
99% confidence. There is one
excursion above the 99% threshold on the training set}again this is no cause
for alarm. On the testing set, at the 99% confidence level the index is consistently
high from the 20% damage level onwards; however, it only signals damage
unequivocally from 40% onwards. This corresponds to detection of a 10mm cut
in the stringer. At the 99
99% level, the network only responds with better than 50%
accuracy from the 40% damage level onwards. Overall, based on the 99% confidence level,
it might be argued that the network is a slightly more sensitive diagnostic than the outlier
analysis.

4.4. KERNEL DENSITY ESTIMATION

The final method of analysis used KDE. As this is known to be more sensitive to small
data sets, a pseudo-synthetic training set of 1000 points was obtained by computing the
mean and covariance matrix of the training set and then generating 1000 points around the
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Figure 14. KDE novelty score on training set (normal condition data).
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mean with the corresponding Gaussian distribution.z A first attempt using the smoothing
parameter from least-squares cross validation gave results which were clearly under-
smoothed. This is understandable, as the cross-validation calculation itself may suffer if
the data set is sparse. The value of 0
8 was increased to 2
0 in order to give more
smoothing. The results are shown in Figures 14 and 15 in the form of a novelty score,
which is �log #ppð

%
zÞ; on the training and testing sets. The results are probably still

undersmoothed as witnessed by the small variation in the score over the training set. The
damage is only detected unambiguously beyond the 40% stage. Note that the novelty
score appears to saturate at an upper bound. At these points, the density was returned as
zero (to machine precision) and an arbitrary value of #ppð

%
zÞ ¼ 10�100 was assigned.

The thresholds shown in Figures 14 and 15 correspond to 99 and 99
99% confidence as
before. They were computed as follows. Given a 50-dimensional Gaussian density, the
radius was calculated which would bound 99 or 99
99% of the probability mass. The value
of the density at these radii were found and used to scale the estimated density i.e., to find
the value of density corresponding to 99% or 99
99% confidence.
zThe authors are aware of the apparent contradiction here. If the distribution is assumed to be Gaussian, then
it is characterized completely by the mean and standard deviation. The object of the exercise is a little different
here. A preliminary analysis showed that the density estimation did not work with 118 data points. The pseudo-
synthetic data set was constructed in order to see if 1000 points would suffice. It was assumed that up to 1000
normal condition measurements would be available. This was not the case here because the authors were
constrained by the testing schedule. In practice, if a structural health monitoring system based on this approach
were deemed desirable, testing might be scheduled for the appropriate number of normal conditions.
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4.5. DISCUSSION

The results of the three methods of analysis are summarized in Table 1.
Considered in terms of the two thresholds, the table argues that the 99% threshold is

better in terms of sensitivity for detection. The 99
99% threshold misses 14 damage states
disclosed by the lower threshold. However, the lower threshold gives two false positives for
detection, while the higher threshold gives none. Statistically, two false positives from 20
cases at the 99% confidence level is somewhat unlikely and is probably an indication that
the assumption of Gaussianity used in constructing the thresholds is not quite holding. On
the whole, the 99% threshold appears to be preferable because of the heightened
sensitivity.

In terms of the three methods, at the 99% confidence level, the outlier analysis is the
only method to unequivocally signal damage at the 30% level. However, the neural net
only misses one of the 30% damage cases, and in addition signals 8 from 10 of the 20%
cases. The neural net appears to be a little more sensitive. KDE can be seen from the table
to lag in sensitivity.

In fact, the results from KDE give some cause for concern. Of the three methods, it is
arguably the most sensitive to using a sparse training set. Applying the guidelines in
reference [18], 1000 training points would appear to be a ridiculously small number for a
50-dimensional data set. In fact, Silverman’s guidelines are rather conservative and sparse
data sets can still be acceptable if the intrinsic dimensionality of the data is much less than
50. Reducing the dimension of the data by some means is always a possibility; however,
there is a caveat here. Principal component analysis, for example, discards those
dimensions in the data which contribute least to the overall power in the signal. In reality,



Table 1

Summary of novelty detector results

Detections at damage percentage

Method Confidence 0 10 20 30 40 50 60 70 80 90

OA 99
00 1 1 0 10 10 10 10 10 10 10
OA 99
99 0 1 0 9 10 10 10 10 10 10
ANN 99
00 1 2 8 9 10 10 10 10 10 10
ANN 99
99 0 0 4 5 10 10 10 10 10 10
KDE 99
00 0 0 0 3 10 10 10 10 10 10
KDE 99
99 0 0 0 2 10 10 10 10 10 10
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one might discard precisely those components which distinguish between normal
condition and damage simply because they are relatively small. In support of this, it is
shown in reference [19] that a high-dimensional data set allows a kernel-based method to
substantially outperform a neural classifier. When the data is transformed to a lower-
dimensional representation with PCA, the performance of the kernel method is reduced to
that of the neural network. In many ways one should adopt a pragmatic approach to
statistics, if a method appears to be working well and is supported by a sensible validation
strategy, it seems uneconomical to discard it on the basis of a possibly highly conservative
theory. Having said this, the present study has two methods of analysis which are
outperforming the density estimation method and do not give such substantial
reservations concerning the high dimensions. The results above indicate that KDE may
not be appropriate here.

Of the other two methods, both the outlier statistic and the neural network give
acceptable results, with the neural network marginally more sensitive. The deciding
argument in favour of the outlier statistic is, however, its simplicity. Occam’s razor
demands that it be given priority. There is also an important practical point here. Whether
or not statistical techniques will find acceptance for SHM of aerospace structures or not
will be decided by the question of certification. If the safety and reliability of the methods
can be established, there is a chance they will pass into use. In these terms, the outlier
analysis, which is a simple linear algebraic procedure will lend itself to reliability analysis
far easier than the highly non-linear complex neural network. This is not a reason to
discard neural networks, it is a reason to explore methods of certification for such systems.
With the simplicity of the outlier analysis come a number of restrictions, the assumption of
Gaussianity being one of the foremost. If the normal condition sets for some real
structures have complex topographies, for example if they are non-convex, the outlier
analysis will fail. However, it is suggested here as the first choice for an application.

4.6. OUT-OF-LINE TRANSMISSIBILITIES

The next stage in the analysis concerned the off-stringer transmissibilities i.e., those
along lines AC and CD (Figure 2). In both cases, the dominant peaks were examined in
order to identify those with the most marked systematic variation with damage. In both
cases, the same peak as for transmissibility AB was selected; data from the same 50-point
window was used. The analysis for case AB indicated that the outlier analysis was the
method of choice in terms of sensitivity to damage and computational simplicity, so only
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this method was applied to the off-stringer data. The analysis was carried out in an
identical fashion to the AB case.

Figure 16 shows the results of outlier analysis on the testing set for the AC

transmissibility. All points in the training set were sub-threshold as in Figure 10. On the
testing set, there are no excursions above threshold over the normal condition data (first 10
points of Figure 16). There are two points signalling damage on the 10% damage set;
however, there are none on the 20% damage data and it is only when the damage level
reaches 30% that the distance measure is consistently above threshold. One concludes that
the analysis flags 30% damage, i.e. the 7
5mm cut. The damage measure is not
monotonically increasing with damage for the same reason as discussed in the
transmissibility AB case.

The results for outlier analysis on the CD transmissibility testing set are given in
Figure 17. The results are broadly similar to those for paths AB and AC: the analysis
detects damage consistently when the level is above 30%.

The conclusion from the analysis of different transmissibility paths is that the damage
detection capability does not seem to be overly sensitive to the transmissibility path within
the restricted range considered here.

4.7. REDUCED DIMENSION

At this stage, it was decided to investigate the effect of reducing the dimension of the
data set. As discussed above, the usual arguments based on the ‘‘curse of dimensionality’’
in statistical procedures would suggest that 50 dimensions may be excessive. It is shown
above, by the performance of the outlier analysis that the information for diagnosis is
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Figure 16. Mahalanobis distances on testing set}transmissibility AC:
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Figure 17. Mahalanobis distances on training set}transmissibility CD:
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present in the 50 dimensions. However, one might argue that a similar performance might
be obtained with a lower-dimensional feature set.

In order to examine the effect of reducing the dimension, the first strategy was simple
sub-sampling. 10 equally spaced AC transmissibility lines were taken from the 50-
dimensional feature vector and used for an outlier analysis. The results are shown in
Figure 18 for the testing set. Although the results are superficially very close to the results
for the full feature set (Figure 11), there is an overall drop in the peak discordancy from
just below 12
0 (in the units of the figure) to 9.5. Also the threshold for unequivocal
detection moves from 30 to 40% damage. Dimensions between 10 and 50 give results
which interpolate smoothly between the levels of performance shown. As the outlier
statistic is not showing any signs of pathology as a result of the higher dimension, it is
considered acceptable for further use}this will be described in the later papers in this
sequence.

Figure 19 shows the performance of a 10-dimensional feature set extracted by PCA. The
caveat discussed in an early section is illustrated. Not only is the level of discordancy vastly
reduced, but it appears that PCA has made a qualitative change in the data. There is no
fall in the discordancy at high levels as the peak moves out of the window.

5. DISCUSSION AND CONCLUSIONS

This report describes an experimental verification of an approach to structural health
monitoring. The structure of interest is a simulated aircraft wingbox constructed from
aluminium and incorporating features found in true aircraft panels, namely ribs and
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Figure 18. Mahalanobis distances on testing set}transmissibility AC reduced to 10 dimensions by
sub-sampling.
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stringers. The object of the exercise was to detect damage induced in the stringer using
vibration measurements.

The method considered was a level one diagnostic based on the idea of novelty
detection. The patterns used for detection were measured transmissibilities centred on a
particular peak which proved sensitive to the damage. Three different algorithms were
applied: outlier analysis, a neural network approach and kernel density estimation. Each
proved successful in detecting damage to an acceptable extent. Outlier analysis and the
neural network proved most sensitive, giving consistent indications of damage
corresponding to a 7
5mm saw-cut. The approach based on density estimation gave
some cause for concern about the size of the training set for such high-dimensional
patterns. In fact, all of these approaches suffer to some extent from the ‘‘curse of
dimensionality’’, however, for the outlier analysis and neural network there are mitigating
circumstances. In the case of the outlier analysis, the damage threshold is determined by a
Monte Carlo procedure which implicitly takes account of the size and dimension of the
training set and this may well contribute to the apparent robustness of the method. In the
case of the neural network, noise was added during training as a simple means of
regularization, and thus the generalization properties of the network may well have been
adequately determined. Overall the outlier analysis was selected as the means of moving
forward as it offered a much simpler solution than the neural network with no apparent
deterioration in performance. It was noted, however, that the very simplicity of the
approach could preclude its use in some applications and that this should be monitored.

The method was shown to be partly insensitive to the transmissibility path used. This is
important as the requirement that detectable damage be located directly between sensors is
too restrictive to be of any practical use. As the transmissibility estimation requires no
specification of the input excitation, it can potentially be used in an in-flight context.

One important issue which the analysis raised was the question of averaging the data.
When averaged transmissibility data were examined, even the lowest level of damage
(2
5mm cut) gave a pattern distinct from normal condition. However, this required 128
averages which took 20min to acquire. The results discussed above were for single
measurements which took 10 s to obtain and the sensitivity, detection threshold of
5
0–7
5mm damage, reflects this. There is a clear trade-off between speed of acquisition of
the patterns and sensitivity of the diagnostic. If an on-line monitoring system is needed,
the degree of averaging which will be possible will depend on the desired frequency of the
health reports. It is strongly advised that the maximum averaging consistent with speedy
reportage should be used.

A final remark concerns the nature of the simulated damage. The saw-cut was
sufficiently wide that the cut surfaces never met, at the levels of vibration experienced here.
This means that the damaged system is still linear, but simply with a local reduction in
stiffness. In the case of a true fatigue crack, the crack would be likely to ‘‘breathe’’ i.e.,
open and close. This induces a local non-linearity in the stiffness with a reduction only
when the crack is open. Further non-linearity in the form of friction may appear if the
crack faces rub. The transition from a linear to a non-linear system with damage may
actually help in the design of a diagnostic system as energy will be transferred between
frequency bands and this may lead to sensitive features for damage detection.
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